
A Dynamic-Pricing Label-Setting Algorithm for

Solving the Elementary Resource Constrained Shortest

Path Problem

Ignacio Vitale1 and Rodolfo Dondo2

1 Facultad de Ingeniería Química, U.N.L, Santiago del Estero 2829,

3000 Santa Fe, Argentina
vitalenacho@gmail.com

2Instituto de Desarrollo Tecnológico para la Industria Química (U.N.L. - Conicet), Güemes

3450, 3000 Santa Fe, Argentina
rdondo@santafe-conicet.gov.ar

Abstract. The resource constrained elementary shortest-path problem is a prob-

lem used for solving vehicle-routing, production-scheduling and crew-

scheduling applications. It occurs as a sub-problem used to implicitly generate

the set of all feasible columns in a column-generation solution algorithm. In the

problem there is a directed graph with a source node and a destination node,

and each arc has a cost and a vector of weights specifying its requirements of

resources. A minimum-cost source to destination directed path is sought such

that the total consumption of resources does not exceed the resources vehicle-

capacity. The problem is NP-hard in the strong sense. We propose a new label-

setting heuristic algorithm based on the dynamic update of resources and prices

vectors according the partial label-path and embed it into a column generation

algorithm to solve some testing problems. Later we perform some numerical

experiments in order to study its computational efficiency.

Keywords: resource constrained shortest path, label setting, column genera-

tion.

1 Introduction

The elementary resource constrained shortest-path problem (RCSPP) is a problem

used for solving vehicle-routing, production-scheduling and crew-scheduling applica-

tions. It occurs as a sub-problem used to implicitly generate the set of all feasible col-

umns in a column-generation (CG) algorithm and it is the most time consuming prob-

lem of such a procedure. The RCSPP is NP-hard in the strong sense for graphs con-

taining negative cost cycles as demonstrated by by Dror [1]. However, the problem

remains NP-hard even if the graph is acyclic. Several solution approaches have been

developed for solving the RCSPP up to optimality. The main kinds are: (1) label set-

ting algorithms [2, 3, 4]; (2) label correcting algorithms [5, 6, 7]; (3) constraints pro-

gramming [8]; and (4) methods based on branch-and-bound [9, 10, 11, 12]. Further

details on these techniques and its variations (bidirectional labeling, asymmetric bidi-

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 1

mailto:rdondo@santafe-conicet.gov.ar

rectional labeling, decremental state-space relaxation, among others) are reviewed by

[13]. Our motivation for studying the RCSPP comes from application of CG methods

to industrial engineering. We are specifically interested in the pricing problem applied

to (i) log transportation; (ii) production planning and (iii) bus crew scheduling. In

spite of these different applications the subproblem-core is quite similar because it can

be modelled as a RCSPP in all of them. We propose a pseudo-polynomial complexity

solution procedure for the RCSPP, which is based in the dynamic modification of

prices and load vectors within the label generation procedure according the partial

label-path. Numerical examples are solved for testing the algorithm performance.

2 Problem Statement

Consider a routes-network represented by an undirected graph G{I  p, A } with I

= {i1, i2, ..., in} denoting the set of nodes or customers and p representing a source

/sink node called “depot”. Nodes and the depot are connected by a set of arcs A = {(i,

j) / i,j  I  p}. Known resource matrixes W = [W1 , W2, …, Wn], with Wi = [wi1,…,

wiw], and a known prices-vector  = [1, 2, …n] are associated to the customer set I.

Resources wiw must be collected within a time window [ai, bi] on each node i  I. The

parameters ai stand for the earliest possible start-time of the service and parameters bi

state the latest possible start-time of the service at any node. Travel-costs C = {cij}

and travel times  = {tij} are given data for any arc (i,j)  A. Moreover, the service

time on node i is denoted sti. For visiting node i  I, the associated price i and the

resource vector Wi are accumulated. It is assumed that the triangle inequality is satis-

fied by the travel costs and travel times, i.e. cik + ckj  cij and tik + tkj  tij . The solu-

tion to the RCSPP problem must: (1) Maximize the net profit collected from the se-

lected subset of nodes I
opt
 I. This profit is defined as the sum of collected prices

minus the cumulated cost incurred by traveling arcs to pick them. (2) The route must

start and end on the depot p. (3) The selected nodes must be visited once, so an ele-

mentary path is designed. (4) Collected resources must never exceed the resource

vehicle-capacity qw. (5) The time-length used to collect loads and prices must be

shorter than the maximum allowed working time t
max

. (6)The service at every customer

site i must start within the specified time window [ai, bi].

3 A labelling algorithm for deterring repetition of nodes

The computational hardness of this problem has inspired researchers to develop

different solution methods to handle this NP-hard problem. The most common ap-

proach is to solve the non-elementary relaxation of the problem; i.e. routes that visit

customers more than once are allowed and later eliminated. While several papers ad-

dress the problem of eliminating cycles of 2 and 3 nodes, not much work researched

the elimination of all cycles. Beasley and Chirtofides [12] proposed a zero-order pro-

gramming formulation in which forbidding of visit to nodes more than once is mod-

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 2

elled via an additional resource for each node and each of these resources has a limit

of one. Vitale and Dondo [13] researched alternative MILP formulations for the ele-

mentary shortest path problem with time windows and capacity constraints. Kohl [15]

further researched the idea of node-resources proposed on [12] and developed a label-

setting algorithm for solving the problem. Feillet et al. [16] took the idea proposed by

[12] to develop strong dominance criterions. They also suggested having resources

associated to a subset of nodes instead of having a resource associated to each node.

The drawback of these methods is that dominance criterions become more complex

because dominance of one label over another must be checked for each resource (i.e.

capacity-resources + node-resources) leading to an exponential complexity. E.g. if a

partial path p1 doesn’t contain some node of another path p2, the dominance rule will

always keep path p1 independently of the value of accumulated non-node resources.

This, in turn, leads to very large labels-banks. To avoid a computational burdensome

resources dominance-checking, we have to use an implementation offering pseudo-

polynomial efficiency. We, therefore, propose a heuristic procedure that consists on

dynamically updating resources and price vectors according the label-path. A label is

here defined by a vector of 4 + │W│+│I│ elements. The first on is the “head node”,

i.e., the last visited node of the label-path; the second stores the label-path reduced

cost, the third one the label-path travel-cost, the fourth element stores the path cumu-

lated travel-time (which it can be seen as a constrained resource). The following

│W│elements correspond to the cumulated resources collected along the path, and

the last │I│ elements store the ordinality of visited nodes, in visiting order, as fol-

lows:
Last

visited

node

Path

reduced

cost

Path

travel

cost

Path

travel

time

Collected resources Visited nodes

 w1 … ww ij … -

Figure 1: Pseudo-code of the dynamic pricing labeling algorithm

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 3

The proposed dynamic pricing label setting algorithm is summarized by the pseu-

do-code showed in Fig. 1 in which the cumulated resources vector is denoted by Li.

We embedded this heuristic algorithm into a CG algorithm (i.e., we just solve the root

node of a branch-and-price tree) for generating columns as longer as it is able to pro-

vide new negative reduced-cost columns and; whenever this is no longer possible, we

use a MILP formulation to produce the remaining columns. If this formulation also

fails to find a new column, the CG procedure ends. The master problem is a linear set

partitioning problem and constraints duals taken from its resolution are passed to both

pricing methods. The procedure is sketched by the flow chart depicted by Fig. 2.

Figure 2: The CG algorithm

4 An illustrative example

As above stated the RCSPP occurs as a sub-problem used to implicitly generate the

set of all feasible routes and schedules in the CG reformulation of many routing and

production scheduling problems. We embedded the above labelling algorithm and a

MILP formulation of the RCSPP [14] into a CG procedure (See Figure 2) in order to

solve some testing instances. The algorithm was developed and coded in MatLab us-

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 4

ing GAMS [17] just to compute the linear and integer RMPs and to solve the MILP

formulations of the pricing problem. Communication between both languages was

performed by using the GDXMRW facility developed by [18].

We first illustrate the working logic of the algorithm by solving a toy vehicle rout-

ing problem of just 4 nodes, I = {i1, i2, i3, i4} located in the Euclidean plane by their

respective coordinates X = [41, 35, 55, 55] and Y = [49, 17, 45, 20]. Depot coordi-

nates are xp = 35 and yp = 35. Also t
max

= 150, the nodes-load vector is W = [10, 42,

13, 19], the vehicle capacity is q = 50 units and ts = 10. This is a single resource prob-

lem and the objective function is the minimization of the travelled distance. The pro-

cedure was initialized by the four routes p - ii – p routes; the problem was solved in

just 2 iterations and the solution process is described as follows: the initial master ob-

jective had a value zmaster = 161.18 and the prices vector was 0 = [30.46, 36.00, 44.70,

50.00]. By using this vector, the slave labelling algorithm generated the columns pre-

sented in Table 1.

Table 1: Column generated in the first iteration of the CG for the illustrative example
Column Base Path Reduced

cost
Travelling

cost
Travelling

time
Load

1
2

p
p

4-3-1-p
3-1-p

-45.39
-23.03

79.79
62.15

109.79
82.15

42
23

These columns and their associated costs, resources and paths are expressed as la-

bels by the following two vectors:

[0 -45.39 79.79 109.79 42 (4 3 1 0)]

[0 -23.03 62.15 82.15 23 (3 1 0)]

To illustrate the path propagation process, let us describe how “column 1” was cre-

ated: The labelling algorithm initially extends paths from the depot p (node of ordinal-

ity “0”) to any customer ii and computes it loads price and resources vector W1-0 and

1-0. From any customer ii, paths are extended to another label (headed by node ij)

considering the updated load and price vectors W1-i and 1-i. Fig. 3.b depicts the par-

tial path p – i4 with its associated vectors W1-4 and 1-4. From the last visited node, the

path is further extended to other nodes generating new labels and later dominance

criterions are checked. Dominated labels are deleted and the new ones are stored in

the LabelStore. See, for example, the extension of the path p – i4 to i3 in Fig 3.c. Note

that prices and loads picked by the vehicle are zeroed in the dynamic vectors Wk and

k (k = iteration number), making unprofitable to return to such visited nodes. From

any new path stored in LabelStore, a return path to the depot p is computed and, if it is

feasible and it has negative reduced cost, is stored in TargetLabels. To avoid an un-

controlled growth of both LabelStore and TargetLabels, repeated labels are deleted

from such label-banks. When all labels of the LabelStore have been either processed

or deleted by the dominance check, the algorithm ends and return to the (l)RMP the

paths from (and to) the depot stored into TargetLabels. So, after ending the labelling

algorithm, both columns described in Table 1 were feed to the (l)RMP. Its solution

leaded to a solution value zmaster = 115.79 and a price vector 1 = [30.46, 36.00, 21.68,

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 5

27.64]. This vector was feed again to the labelling algorithm which this time was una-

ble to return any column. Consequently, the MILP formulation was solved to find any

potentially missed column. As this formulation was also unable to do it, the CG pro-

cedure ended and, as the solution for the RMP was integer, the optimal solution (de-

tailed in Table 2 and depicted in Figure 4), was found.

Table 2: Optimal solution to the illustrative example
Route Travel cost Travel time Load

p-i4-i3-i1-p
p-i2-p

79.79
36.00

109.79
46.00

42
42

Figure 3: Extension of the path for generating column “1”.
(a)

W = [10, 42, 13, 19]

 = [30.46, 36.00, 44.70, 50.00]

i4

i2

i3

p

i1

W1;0 = [10, 42, 13, 19]

1;0 = [30.46, 36.00, 44.70, 50.00]

(b)

W = [10, 42, 13, 19]

 = [30.46, 36.00, 44.70, 50.00]

i4

i2

i3

p

i1

W1;4 = [10, 42, 0, 19]

1;4 = [30.46, 36.00, 0.00, 50.00]
(c)

W = [10, 42, 13, 19]

 = [30.46, 36.00, 44.70, 50.00]

i4

i2

i3

p

i1

W1;4-3 = [10, 0, 0, 19]

1;4-3 = [30.46, 0.00, 0.00, 50.00]

(d)

W = [10, 42, 13, 19]

 = [30.46, 36.00, 44.70, 50.00]

i4

i2

i3

p

i1

W1;4-3-1 = [0, 0, 0, 19]

1;4-3-1 = [0.00, 0.00, 0.00, 50.00]

Figure 4: Optimal solution to the illustrative example

W = [10, 42, 13, 19]

 = [30.46, 36.00, 44.70, 50.00]

i4

i2

i3

p

i1

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 6

5. Results and Discussion

The classical vehicle routing problem with time windows (VRPTW) is considered a

testing problem for labelling algorithm to be applied later in more realistic problemat-

ics as rich routing and production scheduling problems. Therefore, the proposed algo-

rithm is tested by solving some benchmark VRPTW instances and by comparing its

computational performance with a CG algorithm that use three different MILP pricing

formulations [14]. The Solomon’s testing VRPTW instances [19] have been grouped

into C, R and RC categories. C-class problems feature clustered customers. Locations

in R-class problems were randomly generated while RC-class problems comprise clus-

tered and randomly located customers. The data set for every category comprises 100

nodes, a depot, similar vehicle capacities but different hard time-window constraints.

Euclidean distances among customers and traveling times are numerically identical.

Service times are independent of customer requirements and the tour duration cannot

exceed a maximum value t
max

. The objective is the minimization of the total travelled

distance. Smaller problems can be generated by selecting the first nodes of each in-

stance. Benchmark problems are further classified into types “1” and “2”, like C1 and

C2. Type-1 problems have narrow time windows and small vehicle capacities while

type-2 problems feature wider time windows and larger vehicle capacities. In order to

compare results of the approach that uses the dynamic-pricing labelling procedure

with CG algorithms based in “pure” MILP generators we solved all R1-type instances

with 25 nodes [13] in a 2.0 GHz 16 GRAM PC. The purpose was to compare times

consumed to reach optimality. Our results are summarized in Table 3.

Table 3: Comparison of results for R1 Solomon’s instances with 25 nodes.
Instance This approach CG

Formulation 1

CG

Formulation 2

CG

Formulation 3

Integer

solution

 Cols CPU

(s)

Cols CPU

(s)

Cols CPU

(s)

Cols CPU

(s)

R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

R112

Average

1550

5368

7815

10386

2524

6846

9114

10726

3845

5268

8216

8857

6710

4.7

42.6

212.3

219.2

7.8

79.3

254.6

351.0

30.0

32.4

249.4

137.1

135.4

303

356

457

453

363

401

436

442

709

466

501

429

443

8.9

40.4

223.3

540.6

16.2

50.3

163.3

311.9

43.4

185.4

127.7

312.2

168.6

165

218

327

462

234

310

544

548

536

321

389

542

383

5.1

10.5

86.2

424.9

43.6

36.8

351.1

553.1

79.8

336.6

180.4

461.2

255.8

7.9

87.5

225.8

234.5

15.4

34.1

215.4

225.3

104.2

252.9

231.6

201.5

153.1

163

225

254

383

201

295

348

303

437

289

412

267

298

618.4

549.7

455.8

418.1

531.7

466.6

435.4

404.4

442.8

448.4

446.2

409.6

-

From the above table we can take the following observations: (i) The proposed al-

gorithm faster solved the problem in half of the test instances. (ii) The number of gen-

erated columns is an order of magnitude higher than the number produced using just

MILP generators. (iii) The average CPU solution-time (135.4) was not massively im-

proved with respect of algorithms based in “pure” MILP generators. In other words,

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 7

the much faster solution time per column did not translated in massive improvements

of total solution times.

To roughly illustrate the computational complexity associated to the new algorithm,

we generated and solved instances by selecting the first 5, 10, 15, 20 and 25 nodes

from examples R-102, R-106 and R-110. The information about CPU times and gen-

erated labels was recorded and draw as a function of instances sizes and illustrated in

Figure 4.

Figure 5: CPU time and number of generated routes as a function of instances sizes

5 10 15 20 25 30

1

10

100

C
P

U
 t
im

e
 (

s
)

Number of nodes

R-102

R-106

R-110

5 10 15 20 25 30

10

100

1000

10000

R-102

R-106

R-110

N
u

m
b

e
r

o
f
g

e
n

e
ra

te
d

 r
o

u
te

s

Number of nodes

It can be observed that the number of produced columns as a function of the instance

size shows a pseudo-polynomial behavior but the CPU solution time is still exponen-

tial on the instance size. This means that further research aimed at optimizing the code

may be necessary.

5 Conclusions

In this work, we developed a heuristic dynamic-pricing label-setting algorithm for

solving the elementary RCSPP and performed some numerical research to test its

computational efficiency. The RCSPP is the bottleneck of CG methods designed to

solve vehicle routing, crew scheduling and production scheduling problems. The pro-

posed dynamic label-setting algorithm is based on the idea of dynamically updating

price and resource vectors according to the partial label-path by zeroing prices and

resources values associated to visited nodes. In this way, rather than forbidding re-

visiting customers, elementary paths are generated by discouraging new visits to al-

ready visited nodes. This allows keeping bounded the number of dominance-checks

and the labels banks. As this heuristic procedure may miss some profitable routes, we

complemented it with a MILP formulation of the problem used to generate the missed

routes. The labelling algorithm was first used and then, whenever the CG demands a

few but hard to find columns, the CG procedure switches to a MILP formulation. The

brief numerical testing presented shows some promising results because we reduced

our solution times in half testing instances. Further research aimed at optimizing the

code is going on.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 8

References

1. Dror M. Note on the complexity of the shortest path models for column generation in

VRPTW. Oper. Res. (1994);42:977–8.

2. Desrochers M. and Soumis, F. A generalized permanent labelling algorithm for the

shortest path problems with time windows, INFOR 26 (1988), 193–214.

3. Gallo G. and Pallottino S. Shortest path algorithms, Ann Oper Res 13 (1988), 1–79.

4. Denardo E. and Fox B. Shortest-route methods: reaching, pruning and buckets, Oper

Res 27 (1979), 161–186.

5. Di Puglia Pugliese L. and Guerriero F. A computational study of solution approaches

for the resource constrained elementary shortest path problem, Ann Oper Res (2012)

201, 131–157.

6. Powell W. and Chen Z. A generalized threshold algorithm for the shortest path prob-

lem with time windows. Network design: Connectivity and facilities, P.M. Panalos

and D. Du (Editors), American Mathematical Soc., Providence, RI, (1998) 303–318.

7. Glover F., Glover R., and Klingman D. The threshold shortest path algorithm, Net-

works 14 (1984), 25–36.

8. Rousseau L., Gendreau M. and Pesant G. Using constraint-based operators to solve

the vehicle routing problem with time windows. Journal of heuristics. (2002) 8 (1),

43-58.

9. Carlyle W., Royset J., and Wood R. Lagrangian relaxation and enumeration for solv-

ing constrained shortest path problems, Networks 52 (2008), 256–270.

10. Muhandiramge R. and Boland N. Simultaneous solution of Lagrangean dual prob-

lems interleaved with preprocessing for the weight constrained shortest path problem,

Networks 53 (2009), 358–381.

11. Dondo, R. A New MILP Formulation to the Shortest Path Problem with Time Win-

dows and Capacity Constraints. Latin American Applied Research, (2012) 42, 257-

265.

12. Beasley J. and Christofides N. An algorithm for the resource constrained shortest path

problem, Networks 19 (1989), 379–394.

13. Costa, L.; Contardo, C., Desaulniers, G. Exact Branch-Price-and-Cut Algorithms for

Vehicle Routing. . Transportation Science, 2019, 53 (4), 945-985.

14. Vitale, I. and Dondo, R. On Alternative Formulations to the Shortest Path Problem

with Time Windows and Capacity Constraints. SIIIO, Simposio Argentino de In-

formática Industrial e Investigación Operativa (2019).

15. Kohl, N. Exact Methods for Time Constrained and Related Scheduling Problems.

Technical Universitty of Dennmark DK-2800 (1995).

16. Feillet, P., Dejax, M., Gendrau, M. and Gueguen, C. An exact algorithm for the ele-

mentary shortest path problem with resource constraints: Application to some vehicle

routing problems. Networks, (2004) 43 (3) 2016-229.

17. Kalvelagen, E. Columns generation with GAMS (2011). Downloaded from

http://amsterdamoptimization.com/pdf/colgen.pdf

18. Dirkse S., Ferris M., and Ramakrishnan J. GDXMRW: Interfacing GAMS and

MATLAB (2014).

19. Solomon, M. Algorithms for the Vehicle Routing and Scheduling Problem With

Time Window Constraints. Opns. Res. (1987) 35, 254-265.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

49JAIIO - SIIIO - ISSN: 2618-3277 - Página 9

http://amsterdamoptimization.com/pdf/colgen.pdf

