ASAI, Simposio Argentino de Inteligencia Atrtificial

Verification and Behavioral Synthesis of
Agent-Based Systems.

Fernando Asteasuain!:2[0000-0002-5498—-6878] ' federico
D’ Angiolo!10000-0002-5500-6587] \[anuel Dubinsky!, and Pablo Daniel
Gamboa?

! Universidad Nacional de Avellaneda
2 Universidad Abierta Interamericana - Centro de Altos Estudios CAETI
{fasteasuain}@undav.edu.ar

Abstract. In this work we explore the FVS language as a formalism
to express, validate and synthesize behavior in the agent-based systems’
world. Recent work relates Behavioral Synthesis with agent-based sys-
tems, opening the possibility for formalisms in the formal verification
area to make an impact in the artificial intelligence domain. In this work
we analyze F'VS as a potential candidate to make a contribution given
its desirable characteristics such as flexibility, great expressive power and
its ability to perform behavioral synthesis in Open Systems. A very well
known case of study is analyzed: the Dining Cryptographers protocol,
including one variation of the protocol. FVS was able to fully specify,
validate and synthesize the behavior of the protocol.

Keywords: Agent-Based Systems - Behavioral Synthesis - Formal Ver-
ification

1 Introduction

The formal verification of agent-based systems [7, 11,30, 31,43, 9] is becoming a
crucial activity since the application and use of these kind of appealing systems
in several and important domains such as e-commerce, simulation or distributed
collaborative systems [7, 18,24, 38] among others is on rise in the last few years
[19,31, 26, 39].

Several formalisms have been applied to model how agents communicate and
reason about the world and the environment in order to achieve their goals.
Among them, we can name epistemic logics [40, 25, 1] , logic-based protocols [5,
7] and communicative social commitments [43,6,17]. In the same line, different
model checkers like [13] and other similar techniques and tools have been applied
to formally verify agent-based systems (7,11, 30, 31,43, 9].

Although the meaningful advances introduced by the mentioned techniques
there are still issues to be addressed. One of them involves combining Open
Systems [3, 28, 14, 33] and agent-based systems [43]. There is an natural challenge
involved when dealing with Open Systems since actions beyond the control of the
system must be considered, in contrast to systems known as closed where all the

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 100

ASAI, Simposio Argentino de Inteligencia Atrtificial

events to occur are handled entirely by the system. Open Systems interact with
an environment which generates events (non controllable by the system) which
may impact in its behavior, which constitutes an affect known as Controllability.
This is also referred as uncertainty in works like [43, 29,22, 44].

Another relevant aspect is the expressiveness of the specification language
used to denote the expected behavior of the system. In this sense, several authors
claim the need for a more expressive specification language [21, 43,2, 42, 31, 23,
20].

An interesting line of research has been pinpointed by [15,41]. These works
relate Behavioral Synthesis with Artificial Intelligence concepts as agent-based
systems by treating behavioral synthesis as a planning problem. This relation-
ship allows the possibility that improvements in one area may impact in the
other one and vice versa. Behavioral Synthesis can be seen as an automated
procedure to obtain a correct-by-construction reactive system from its temporal
logic specification [28, 33]. In the case of reactive synthesis, an implementation is
typically given as an automaton that accepts input from the environment (e.g.,
from sensors) and produces the system’s output (e.g., on actuators).

Given this context in this work we explore FVS (Feather Weight Visual Sce-
narios) [2-4] as a formal specification language to model, specify and synthesize
behavior of agent-based systems. FVS is a declarative language based on graph-
ical scenarios and features a flexible and expressive notation with clear and solid
language semantics. FVS can be used to denote, compose and synthesize be-
havior considering linear and branching type logics. That is, both LTL-like and
CTL-like properties can be stated. In addition, FVS can be employed in the
context of Open Systems taking into account non controllable actions. FVS ex-
pressive power is a distinguishable feature since it is more expressive than LTL
[2] and also can synthesize properties that can not be expressed with Determin-
istic Biichi automata [3]. Based on the relationship between behavioral synthesis
and agent-based systems [15,41] and taking into consideration FVS’s expressive
power, flexibility and behavioral synthesis power in Open Systems FVS was ex-
plored in the agent-based systems’ world. To validate our proposal we analyze a
known case of study: The Dining Cryptographers protocol [12], which has been
widely used in the literature for verifying agent-based systems [31,23, 30, 34].
Besides fully modeling and verifying the protocol a controller for the system was
also found. Also a variation of the protocol is analyzed. Given the obtained re-
sults we believe this work constitute an exploratory but solid first step for FVS
in the Artificial Intelligence domain.

The rest of this paper is structured as follows. Section 2 presents the main
features of the FVS language and explains how FVS specifications can be syn-
thesized. Section 3 shows our approach in action by modeling and verifying the
Dining Cryptographer protocol [12] plus obtaining a controller for the system.
Sections 4 and 5 discuss some related and future work respectively while Section
6 exposes the conclusions of this paper.

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 101

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

2 Background

FVS is informally introduced in section 2.1 while FVS behavioral synthesis pro-
cedure is addressed in Section 2.2.

2.1 FVS: Feather Weight Visual Scenarios

In this section we will informally describe the standing features of FVS [2]. The
reader is referred to [2] for a formal characterization of the language. FVS is a
graphical language based on scenarios. Scenarios are partial order of events, con-
sisting of points, which are labeled with a logic formula expressing the possible
events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence of the source with respect to the destination:
for instance, in Fig. 1-a A-event precedes B-event. We use an abbreviation for a
frequent sub-pattern: a certain point represents the next occurrence of an event
after another. The abbreviation is a second (open) arrow near the destination
point. For example, in Fig. 1-b the scenario captures the very next B-event
following an A-event, and not any other B-event. Conversely, to represent the
previous occurrence of a (source) event, there is a symmetrical notation: an open
arrow near the source extreme. For example, in Fig. 1-c the scenario captures the
immediate previous occurrence of a B-event from the occurrence of the A-event,
and not any other B-event. Events labeling an arrow are interpreted as forbid-
den events between both points. In Fig. 1-d A-event precedes B-event such that
C-event does not occur between them. FVS features aliasing between points.
Scenario in Fig. 1-e indicates that a point labeled with A is also labeled with A
and B. It is worth noticing that A-event is repeated on the labeling of the second
point just because of FVS formal syntaxes [2] . Finally, two special points are
introduced as delimiters to denote the beginning and the end of an execution.
These are shown in Fig. 1-f.

A B A B 4 B 2 Not (C)
*o——»ro o—» 0 o—~——>@ *e—>r o
(a) Precedence (D) Mext (c) Previous (d) Forbidden Behavior
4 dand B . Beginning of execution
v @ Ending of Execution
(e) Aliasing (f) Delimiters

Fig. 1. FVS Basic Features

We now introduce the concept of FVS rules, a core concept in the language.
Roughly speaking, a rule is divided into two parts: a scenario playing the role

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 102

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

of an antecedent and at least one scenario playing the role of a consequent. The
intuition is that whenever a trace “matches” a given antecedent scenario, then
it must also match at least one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequent
scenarios. Graphically, the antecedent is shown in black, and consequents in grey.
Since a rule can feature more than one consequent, elements which do not belong
to the antecedent scenario are numbered to identify the consequent they belong
to. Two examples are shown in Fig. 2 modeling the behavior of a client-server
system. The rule in left margin of Fig. 2 establishes that every request received
by a server must be answered, either accepting the request (consequent 1) or
denying it (consequent 2). The rule at the right margin of Fig. 2 dictates that
every granted request must be logged due to auditing requirements.

Reguest-Granted
1

Reguest-Received

° 1 Reguest-Granted Reguest-Loggued
1

L]
1

Reguest-Denied
2

2

Fig. 2. FVS Rules examples

2.2 FVS Behavioral Synthesis

We now describe the basic functioning of the behavioral synthesis scheme in FVS.
The reader is referred to [3, 4] for a complete characterization of the procedure.
FVS specifications are used to obtain a controller using different tools depending
on the type of the property. Using the tableau algorithm detailed in [2] FVS
scenarios are translated into Biichi automata. If the automata represent one
of the specification patterns (excludings those that can not be represented by
Deterministic Biichi automata) then we obtain a controller using a technique
[33] based on the specification patterns [16] and the GR(1) subset of LTL. If
that is not the case, but the automata is a Deterministic Biichi automata we
either employ the GOAL [45] or the Acacia+ tool [10]. If the automaton is
non deterministic we obtain a controller using only the GOAL tool using an
intermediate translation from Biichi automata to Rabin automata. For example,
a controller for the DDR2 Memory Interface case of study explained in [4] is
shown in Fig. 3. The controller monitors, amongst others, a number of properties
that involve timing relationship between events that happen in data and data
strobe signals (represented by the evensDQ and DQS respectively) and some
specific thresholds for the memory interface [32, 4].

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 103

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

DQVILCross

o

DQSSlewrate or
DQSlewRate

Not tDSincrease

tDSIncrease

SFSRNOtOK

SFSRDQ or SFSRDQS

Fig. 3. A controller obtained upon FVS specifications

3 Case Study

In this section we show the FVS language in action modeling an appealing
protocol (including also one variation) in the agent-based systems’ domain. Fur-
thermore, upon the FVS specification a controller for the system is obtained. In
particular, we model, specify, verify and obtain a controller for the protocol of
the dining cryptographers introduced by [12]. We followed some modeling condi-
tions, restrictions and extensions based on the protocol specification given by [30,
23]. In few words, the main objective of this protocol is to allow the anonymous
broadcasting of messages. The declarative specification for the protocol can be
extracted from the text [12]: Three cryptographers are sitting down to dinner at
their favorite three-star restaurant. Their waiter informs them that arrangements
have been made with the maitre dhotel for the bill to be paid anonymously. One of
the cryptographers might be paying for dinner, or it might have been NSA (U.S.
National Security Agency). The three cryptographers respect each others right to
make an anonymous payment, but they wonder if NSA is paying. They resolve
their uncertainty fairly by carrying out the following protocol: Each cryptogra-
pher flips an unbiased coin behind his menu, between him and the cryptographer
on his right, so that only the two of them can see the outcome. Each cryptogra-
pher then states aloud whether the two coins he can seethe one he flipped and
the one his left-hand neighbour flippedfell on the same side or on different sides.
If one of the cryptographers is the payer, he states the opposite of what he sees.
An odd number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that dinner
was paid for only once). Yet if a cryptographer is paying, neither of the other
two learns anything from the utterances about which cryptographer it is.

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 104

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

The following Section (Section 3.1) details how the protocol is modeled and
verified in F'VS. Section 3.2 shows how a controller for the system is obtained.
Section 3.3 introduces a “cheating” version of the protocol. Finally, Section 3.4
presents some final observations for the case of study.

3.1 Dining Cryptographers’ Specification in FVS

Following the strategy introduced in [30,23] we introduce events representing
cryptographers, what they know in each moment, what they express in each
utterance, the flip of the coin, to know whether the number of utterances is odd
or even and actions from the environment (selection of the payer and the result
of coin tosses). We set a model with three cryptographers.

We first model some basic rules guiding the protocol behavior. For example,
after the coin is flipped each cryptographer must declare what she see from its
neighbours(SayEqual or SayDifferent events) before the coin is flipped again.
This is addressed in the FVS rule in Fig. 4: between two consecutive events,
cryptographers must announce what they see (either SayEqual, consequent #1
or SayDifferent, consequent #2).

SavDifferent
)
CoinFlipped 2CoinFlipped
o > 9

A\

SavEgual
1
7

Fig. 4. Cryptographers must announce the flip of the coin result

The following rule in Fig. 5 states that if a cryptographer announces SayFqual
or SayDifferent then the coin must had been flipped in the past. This rule
emphasizes that no cryptographer speaks unless it is required.

CoinFlipped SeyEqual or SayDifferent
1

]
1

Fig. 5. If a cryptographer speaks then a coin should have been flipped in the past

The following rules in Fig. 6 model the behavior of the artifact in charge of
counting the number of utterances and establishing whether it is even or odd. The
rule in the top says that the first occurrence of the CoinFlipped event indicates
an odd number of occurrences. The following two rules shape the change of

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 105

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

state from even to odd and from odd to even given each next occurrence of the
CoinFlipped event.

CoinFlipped CommFlipped and Odd
1

o T

CoinFlipped and Odd
Py CoinFlipped CoinFlipped and Even
1

w.

CoinFlipped and Even
® CoinFlipped ComFlipped and Odd
1

— e
Fig. 6. Odd and even utterances’ determination

We now model two properties that must be verified in the system consider-
ing a system with three cryptographers. The first one (Property 1) establishes
that if the first cryptographer did not pay for the dinner and there is an odd
number of utterances then she knows that someone of the remaining cryptog-
raphers paid for the dinner, but she does not know who the payer is. Finally,
the second property (Property 2) says that if the number of utterances is even,
the first cryptographers knows that nobody paid for the dinner. As it was previ-
ously mentioned we introduce events to represent whether a cryptographer paid
or not, and also what does she knows at each moment. For example, the event
C2NotPaid indicates that cryptographer number two did not pay the dinner.
Similarly, an event like C1KC2NotPaid represents the fact that cryptographer
number I knows that cryptographer number 2 did not pay. These two properties
are addressed in Fig. 7. The first two rules of figure Fig. 7 capture the require-
ments denoted by Property 1. The one in the top says that given the required
conditions the first cryptographer knows that one of the others cryptographers
paid for the dinner. The rule beneath it adds that for the same triggering condi-
tions the first cryptographer does not know which of the other two cryptographer
actually paid. Finally, rule in the bottom of Fig. 7 shapes the behavior introduced
by Property 2.

3.2 Dining Cryptographer’s Validation and Controller Synthesis

Using the FVS specification for the system under consideration we were able to
verify the properties shaping the behavior of the Dining Cryptographers proto-
col. In addition, FVS specifications can be translated into Biichi automata and

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 106

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

CINotPaid and Odd
® CIKC2Paid or CIKC3Paid
1
C'INotPaid and Odd
® Not (CIKC2Paid) and Not (CIKC3Paid)
1
1
Even
® CIKC2NotPaid and CIKC3NotPaid
1

Fig. 7. Properties of the protocols that must be satisfied

then can be used as input to synthesis tools to obtain a controller for the system.
Given this, we were able to obtain a controller for the protocol which monitors
its behavior and responds as expected with the environment. A simplification of
the controller is shown in Fig. 8, where two simple paths are shown: one where
the NSA paid the dinner and other one where the payer is cryptographer num-
ber two. The complete controller for the protocol contains 103 states and 423
transitions.

3.3 Dining Cryptographer Protocol: a Variation

We now consider a different version of the protocol introduced in [23] named
Cheating Dining Cryptographer. In this version a cryptographer is allowed to
“cheat”. That is, a cryptographer can say the opposite she is supposed to say.
This version can be seen as modeling a faulty transmission. New events are
introduced to reflect this new variation of the protocol. In particular, now a
cryptographer can behave correctly or in a cheating mode. This is shown in Fig.
9.

We first introduce three rules to check if they are satisfied by the cheating
version as denoted in [23]. The first one (Property Cheating 1) states that always
when the number of differences is odd and the first cryptographer has not paid for
dinner, then she knows the cryptographer who paid for dinner. As expected, this
rule is not satisfied in the model since no of the cryptographers should have this
information. The second one (Property Cheating 2) states that it is always true
that if the first cryptographer has not paid for dinner then she knows that some
other cryptographer pays. This also is also not satisfiable by the system since this
behavior only happens if the number of utterances is odd, a condition which is
missing in the elicitation of the property. Finally, a third property is introduced
(Property Cheating 3) says that the last cryptographer knows that always when

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 107

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

C1,C2and C3 SayEqual

InitialState

oinFlipped and O ad

Fig. 8. A controller for the DC protocol

CorrectC
° 1

1
CheatingC

I

Fig. 9. Introducing cheating cryptographers

the first cryptographer behaves correctly and the number of differences is even,
then any of the cryptographers is not a payer. This property is satisfied with a
model including only one cheater [23]. These three rules for the cheating version
are depicted in Fig. 10.

We now add an extra property, which corresponds with an instantiation of
the Response Chain pattern (with one stimuli and two responses) with After q
Until r scope [16]. In this case, the new property requires that cryptographer C3
must be initialized as cheating or correct cryptographer only after cryptographer
C1 and C2 are initialized. In other words, after the protocol is started an stimuli
event CoinFlipped must be followed by responses CorrectC1 or CheatingC1 or
CorrectC2 or CheatingC2 (cryptographers one and two are initialized either as
cheating or correct cryptographers) before the initialization of cryptographer 3
occurs. FVS rule in Fig. 11 illustrates this behavior.

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 108

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

CINotPaid and Odd
® CIKC2Paid and CIKC3Paid
1
1
CINotPaid
° CIKC2Paid or CIKC3Paid
1
1
CorrectCI Even
° Y C3KCINotPaid and C3KC2NotPaid and C3IKC3NotFPaid
e 1

Fig. 10. Modeling the Cheating Variation’s Rules

Pi‘ofomﬂ&‘ta‘!en’g\,or (CorreetC3 or ChearngC3) Colziv'ppm' (CorrectCI or IC‘hgan-ngCﬂ CorrectC2 or f‘heampg(‘:’ CorrectC3 or lCl:rzanngC3
>

1 1 1
1

Not (CorrectC3 or CheatingC3)

Fig.11. An extra property for the Cheating Variation of the protocol

Finally, it is worth mentioning that we also obtained a controller for the
cheating version of the protocol following the strategy described in Section 2.2.
In this case, the controller includes 207 states and 671 transitions.

3.4 Some Observations

After completing this first exploratory step of FVS in agent-based systems we
can point out that a complex protocol involving interesting agent communica-
tions was fully specified and verified using FVS as the specification language.
What is more, a controller was found for both versions of the protocol exhibit-
ing the flexibility and expressive power of the tool, including also open systems
requirements. It is worth mentioning that the property depicted in Fig. 11 can
not be represented by a Deterministic Biichi automata. Even in this conditions
a controller could be found, a condition that is limitation for other synthesis
approaches [33].

We are aware of some valid threats to the exposed results. First of all, more
case of studies in the agent-systems world should be explored. Secondly, perfor-
mance and time issues are key factors when dealing with behavioral synthesis
and agent-based systems specification. In this work we only consider a model
with three cryptographers. A reasonable line of future research would involve
to considers more cryptographers to check scalability of our approach. Finally,

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 109

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

regarding expressive power, a more deeply study is needed to compare FVS ex-
pressive power to epistemic logics and other formalisms used in the literature
like CTLKD (A CTL extension for agent-based systems) [8] or others like [36,
43,42].

4 Related work

We share some research objectives with several approaches.

In [30, 23] agent-based systems are verified using the NuSMV model checker
[13] combining logics like CTLK, CTLKD and ARCTL [7,17,9]. The Dining
Cryptographers [12] protocol and the cheating versions is heavily analyzed in
their work. In addition, in [31] the MCMAS model checker in introduced. Al-
though our approach provides the possibility of obtaining a controller besides
formal verification, a more extensive study to compare efficiency and expressive
power with these approaches would be an undoubtedly enriching process for our
line of research.

Some other approaches express agent based behavior through the use of social
commitments formalisms [43,17]. Social commitments proved to be a powerful
representation for agent interactions. They, in fact, provide a social semantics
that abstracts away from the agents internal states and offers social and observ-
able meaning to agent messages exchange [43]. Social commitments are specified
in a modal logical language called Probabilistic Computation Tree Logic of Com-
mitments (PCTLC) [44]. It would be more than interesting trying to compare
and analyze the impact of traditional probabilistic model checker [35] in this do-
main. This would involve an FVS extension to deal with probabilistic and social
commitments constructors.

Efficient model checking algorithms for verifying agent-based systems are
deeply analyzed in [43]. In order to improve FVS efficiency a thorough analysis
of these algorithms and data structures must be done in the short future.

Work in [46] presents a novel technique employing symbolic modern checking
in the context of the Dynamic Epistemic Logic. FVS does not feature the possi-
bility of reasoning with symbolic model checkers. This remains as an interesting
line to further expand our work. Similarly, work in [27] proposes an appealing
logic combining Public Announcement Logic (PAL) [37] and Dynamic Epistemic
Logic [46]. The flexibility and expressive power of these logics must be carefully
considered to validate FVS contributions.

5 Future Work

We contemplate three main aspects to expand and validate the results of this
work.

First, we would like to take into account crucial concepts as performance and
efficiency and compare our approach against other known formalisms [30, 31, 43].
One way of addressing this issue would involve to include more cryptographers

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 110

Rectangle

ASAI, Simposio Argentino de Inteligencia Atrtificial

in the case of study analyzed in Section 3 to check scalability since most of the
algorithms involved in verifying and synthesising behavioral properties are based
on the size of the automata which feed the tools.

In second place we would like to conduct an study to deeply analyze the
expressive power of FVS compared to epistemic logics [40, 25, 1] and other agent-
based systems logics like CTLK, CTLKD and ARCTL [7,17,9]. It would be
interesting to explore if FVS needs to be extended to represent more sharply
agent-based systems’ behavior.

Lastly, we would like to perform more case of studies in the agent-based
systems to continue investigating this line of research.

6 Conclusions

In this work we explore the FVS language as a formalism to express, validate
and synthesize behavior in agent-based systems. Given FVS desirable features
as flexility, expressive power and its ability to perform behavioral synthesis in
Open Systems on one side, and the relationship between Behavioral Synthesis
and agent-based systems on the other side, we analyzed FVS impact on this
latter domain.

FVS was able to fully specified and verified a very well known protocol in the
agent-based system field. In addition, a controller was obtained for the system.
We believe the results are promising enough to continue and expand this line of
research.

References

1. Arkoudas, K., Bringsjord, S.: Metareasoning for multi-agent epistemic logics. In:
International Workshop on Computational Logic in Multi-Agent Systems. pp. 111—
125. Springer (2004)

2. Asteasuain, F., Braberman, V.: Declaratively building behavior by means
of scenario clauses. Requirements Engineering 22(2), 239-274 (2017),
doi:10.1007/s00766-015-0242-2

3. Asteasuain, F., Calonge, F., Dubinsky, M.: Exploring specification pattern based
behavioral synthesis with scenario clauses. In: CACIC (2018)

4. Asteasuain, F., Calonge, F., Gamboa, P.: Behavioral synthesis with branching
graphical scenarios. In: CONATIST (2019)

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying protocol
conformance for logic-based communicating agents. In: International Workshop on
Computational Logic in Multi-Agent Systems. pp. 196-212. Springer (2004)

6. Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Communicative commitments:
Model checking and complexity analysis. Knowledge-Based Systems 35, 21-34
2012

7.](Senta)har, J., Meyer, J.J., Wan, W.: Model checking communicative agent-based
systems. Knowledge-Based Systems 22(3), 142-159 (2009)

8. Bentahar, J., Moulin, B., Meyer, J.J.C., Chaib-draa, B.: A logical model for
commitment and argument network for agent communication. In: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 2. pp. 792-799. IEEE Computer Society (2004)

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 111

Rectangle

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

ASAI, Simposio Argentino de Inteligencia Atrtificial

Biswas, P.K.: Towards an agent-oriented approach to conceptualization. Applied
Soft Computing 8(1), 127-139 (2008)

Bohy, A., Bruyere, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for 1tl
synthesis. In: International Conference on Computer Aided Verification. pp. 652—
657. Springer (2012)

Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agents-
peak. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 409-416 (2003)

Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of cryptology 1(1), 65-75 (1988)

Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic model
verifier. In: International conference on computer aided verification. pp. 495-499.
Springer (1999)

DIppolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesising non-
anomalous event-based controllers for liveness goals. ACM Tran 22(9) (2013)
D’Ippolito, N., Rodriguez, N., Sardina, S.: Fully observable non-deterministic plan-
ning as assumption-based reactive synthesis. Journal of Artificial Intelligence Re-
search 61, 593-621 (2018)

Dwyer, M., Avrunin, M., Corbett, M.: Patterns in property specifications for finite-
state verification. In: ICSE. pp. 411-420 (1999)

El Menshawy, M., Bentahar, J., El Kholy, W., Dssouli, R.: Reducing model check-
ing commitments for agent communication to model checking arctl and gctl. Au-
tonomous agents and multi-agent systems 27(3), 375-418 (2013)

Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based
agents (2003)

Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A., Roventini, A.: Validation of
agent-based models in economics and finance. In: Computer Simulation Validation,
pp. 763-787. Springer (2019)

Giordano, L., Martelli, A., Dupré, D.T.: Reasoning about actions with temporal
answer sets. Theory and Practice of Logic Programming 13(2), 201-225 (2013)
Giordano, L., Martelli, A., Schwind, C.: Specifying and verifying interaction pro-
tocols in a temporal action logic. Journal of Applied Logic 5(2), 214-234 (2007)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Sci-
ence. pp. 266-277. IEEE (1991)

Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F.,
Szreter, M.: Comparing bdd and sat based techniques for model checking chaum’s
dining cryptographers protocol. Fundamenta Informaticae 72(1-3), 215-234 (2006)
Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via
unbounded model checking. In: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. pp.
638-645. IEEE (2004)

Kaneko, M.: Epistemic logics and their game theoretic applications: Introduction.
Economic Theory 19(1), 7-62 (2002)

Khan, F., Reyad, O.: Application of intelligent multi agent based systems for e-
healthcare security. arXiv preprint arXiv:2004.01256 (2020)

Knight, S., Maubert, B., Schwarzentruber, F.: Reasoning about knowledge and
messages in asynchronous multi-agent systems. Mathematical Structures in Com-
puter Science 29(1), 127-168 (2019)

Krka, I., Brun, Y., Edwards, G., Medvidovic, N.: Synthesizing partial component-
level behavior models from system specifications. In: ESEC-FSE

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 112

Rectangle

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

ASAI, Simposio Argentino de Inteligencia Atrtificial

Larranaga, P., Moral, S.: Probabilistic graphical models in artificial intelligence.
Applied soft computing 11(2), 1511-1528 (2011)

Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with nusmv. In: Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence. pp. 1384-1389. IJCAI/AAAI Press (2007)

Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: an open-source model checker for
the verification of multi-agent systems. International Journal on Software Tools
for Technology Transfer 19(1), 9-30 (2017)

Maler, O., Ni¢ckovié, D.: Monitoring properties of analog and mixed-signal circuits.
International Journal on Software Tools for Technology Transfer 15(3), 247-268
(2013)

Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller in gr (1): A case
study. arXiv preprint arXiv:1602.01172 (2016)

Van der Meyden, R., Suf, K.: Symbolic model checking the knowledge of the din-
ing cryptographers. In: Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004. pp. 280-291. IEEE (2004)

Pavese, E., Braberman, V., Uchitel, S.: Automated reliability estimation over par-
tial systematic explorations. In: 2013 35th International Conference on Software
Engineering (ICSE). pp. 602-611. IEEE (2013)

Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae 55(2), 167185 (2003)
Plaza, J.: Logics of public communications. Synthese 158(2), 165-179 (2007)
Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by
model checking via ordered binary decision diagrams. Journal of Applied Logic
5(2), 235-251 (2007)

Rathnakumar, A.J., Balakrishnan, S.: Design of multi-agent based systems for
entrusted communication using jade. Taga Journal of Graphic Technology 14, 766—
774 (2018)

Ruspini, E.H.: Epistemic logics, probability, and the calculus of evidence. In: Pro-
ceedings of the 10th international joint conference on Artificial intelligence-Volume
2. pp. 924-931 (1987)

Sardina, S., D’Ippolito, N.: Towards fully observable non-deterministic planning
as assumption-based automatic synthesis. In: Twenty-Fourth International Joint
Conference on Artificial Intelligence (2015)

Singh, M.P.: A social semantics for agent communication languages. In: Issues in
agent communication, pp. 31-45. Springer (2000)

Sultan, K., Bentahar, J., El-Menshawy, M.: Model checking probabilistic social
commitments for intelligent agent communication. Applied Soft Computing 22,
397-409 (2014)

Sultan, K., El Menshawy, M., Bentahar, J.: Reasoning about social commitments
in the presence of uncertainty. In: 2013 IEEE 12th International Conference on
Intelligent Software Methodologies, Tools and Techniques (SoMeT). pp. 29-35.
IEEE (2013)

Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C.: Goal: A graphical tool
for manipulating biichi automata and temporal formulae. In: TACAS. pp. 466-471.
Springer (2007)

Van Benthem, J., Van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking
for dynamic epistemic logic. In: International Workshop on Logic, Rationality and
Interaction. pp. 366-378. Springer (2015)

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 113

Rectangle

