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Abstract. We propose a new method for detecting adversarial examples
based on a stochastic approach. An example is presented to the network
several times and classified as adversarial if the fraction of times the
output label is different from the label generated by the deterministic
network is above some threshold value. We analyze the performance of
the method for three attack methods (DeepFool, Fast Gradient Sign
Method and norm 2 Carlini Wagner) and two datasets (MNIST and
CIFAR-10). We find that our approach works best for stronger attacks
such as DeepFool and CW2, and could be used as part of a scheme where
several methods are applied simultaneously in order to estimate if a given
input is adversarial or not.

1 Introduction

In recent years Deep Neural Networks (DNN) have been successfully applied
to a wide range of problems, such as image processing, speech recognition and
genomics [10]. Szegedy et al. [18] have made an intriguing discovery, in the
particular case of image recognition, neural networks can misclassify an image
that is slightly different from one extracted from the data distribution. In this
sense, adversarial examples or adversarial images can be defined as those
with this characteristic, and on the other hand, those extracted from the original
dataset are called natural images. As it is mentioned in [6], a wide variety of
networks with different architectures trained on different subsets of the training
data misclassify the same adversarial example. This suggests that adversarial
examples expose fundamental problems in the most used training algorithms.

Let us note that natural and adversarial images can be very similar and even
almost indistinguishable to humans. As an example, in Fig. 1 we show the image
of a dog, the perturbation found by a specific attack and finally the corresponding
adversarial image which is categorized as a cat.

The analysis of this problem has been divided in several questions:
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Natural
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Fig. 1: Example of an adversarial image. Left panel: natural image classified as a
dog. Central panel: perturbation found using the DeepFool attack (in absolute
value and multiplied by a factor 100). Right panel: adversarial image classified
by the network as a cat.

How to generate an adversarial example: The problem of finding an adversar-
ial example was previously treated as an optimization problem. For example,
Szegedy et al. [18] solve the problem using a box constrained L-BFGS algorithm.
Another method that uses an optimization approach is Carlini-Wagner (CW) [2].
Here several possible regularizers are introduced in order to find the minimal
perturbation with respect to different metrics.

Other approaches are based on a more geometrical interpretation. Neural
networks for image categorization can be interpreted as a very high dimensional
function, where the input is a vector representing the image and the output
is a set of n numbers, being n the amount of possible categories. Each one of
these numbers represents the probability that the image belongs to that class.
The most probable category is the one that obtains the highest number. With
this interpretation it is easy to see that there is a set of decision borders, that
determine the points where two output units have the same value. Therefore,
given a natural image, one can try modify it to reach and cross some of the
decision borders of the neural network. The direction of the modification can
be approximated using the gradient of the loss function, giving rise to the Fast
Gradient Sign Method (FGSM) [6] or iteratively evaluating the gradient of the
outputs themselves as in the DeepFool method [15].

Another approach is based in locating the part of the image that should be
perturbed in order to change the classification given by the network. This can
be achieved by evaluating the saliency map [16]. Given the saliency map, the
method picks the most important pixel and modifies it to increase the likelihood
of a given class . This is repeated until either more than a set threshold of pixels
are modified which makes the attack detectable, or it succeeds in changing the
classification.
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How to defend against adversarial attacks: A defense is a process by which a neural
network learns to correctly classify an example that was previously constructed
to become an adversarial example. This topic has been extensively studied (see
for instance [20]). Here we mention only a few of the several approaches that
have been tried in this direction. For instance defensive distillation [17] is used to
smooth the model learned by a DNN architecture during training by helping the
model to generalize better to samples outside of its training dataset and making
it more robust to adversarial examples. Similarly, in [4] stochastic pruning is
proposed to improve robustness. Transformations in the input have been also
proposed as a defense mechanism [8].

How to detect adversarial attacks: This problem is to detect whether a given
input has been manipulated to generate a spurious output. Carlini and Wagner,
show in [1] the difficulty of succeeding in this problem. In their paper, they
analyze ten different strategies to identify which one obtains better results
in terms of detection. The strategy that obtained the best results is Dropout
randomization [5], in which Feinman et al. propose to measure the uncertainty of
a network against a certain input. To do this, randomness is added to the network
architecture, hoping that natural images will be categorized in the same way
despite this random factor. On the other hand, it is expected that the prediction of
adversarial images will not always be the same in all iterations. Other approaches
are feature squeezing [19], where the search space available to an adversary is
reduced by coalescing samples that correspond to many different feature vectors
in the original space into a single sample. Comparing the prediction of the DNN
model corresponding to the original input with the prediction of squeezed inputs,
feature squeezing detects adversarial examples with good accuracy. Meng and
Chen [13] independently proposed a similar adversary detection method as Xu
et al. [19] that also uses the prediction vectors of the original and the filtered
images. Metzen et al. [14] propose to attach a convolutional neural network-based
detector as a branch off a middle layer of the original DNN model. Other authors
base the detection on the study of the statistical properties of the inputs. For
instance [7] adds a new adversarial class in the last layer of the DNN model . The
revised model is trained with both legitimate and adversarial examples, in [12] the
statistics is analyzed at the level of the convolutional filters. Dathathri et al. [3]
propose a different approach called neural fingerprinting. It consists in detecting
adversarial examples by verifying whether model behavior is consistent with a
set of secret fingerprints, inspired by the use of biometric and cryptographic
signatures.

Even when this problem has received a lot of attention it can be considered
as unsolved. As it is mentioned in [1] these detection methods are not really
robust meaning that the attacker can fool them by performing another attack
on a modified network. This network has an additional output, that informs
if the example is adversarial or not. Generating adversarial examples on this
network will, with some probability, defeat the detection method. This approach
is less efficient for systems that use random perturbations, as in the case of
Dropout randomization [5]. Inspired by this result we propose a new approach,
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that consists in analyzing the output of the network when the activation functions
of the neurons themselves have a random component. The structure of the paper
is as follows: in the next section we present the network architectures, the datasets
and the adversarial attacks we are using. In section 3 we introduce the proposed
detection method and show the results. In the last section we discuss the results
and possible implications.

2 Network Architectures and Adversarial Attacks

We follow the notation proposed in [1]. A neural network is denoted by a function
F (x), where x ∈ IRn. For a network that performs classification, the output of
F is a softmax function, so the results can be interpreted as probabilities. We
consider only feed-forward networks, where the output of layer i can be evaluated
in terms of the output of the previous layer according to:

F i(x) = g
(
AiF i−1(x) + bi

)
(1)

where Ai is a weight matrix and bi a bias vector. All the network parameters
can be grouped in vector θ. The non-linear input-output transfer function is
denoted by g. The output of the network before taking the softmax function
is denoted by Z(x). The learning process involves the minimization of a cost
function J(θ, {x, y}) with respect to the different components of the vector θ,
where y are the outputs associated with each input x. The prediction of the
network for each input x is given by

C(x) = arg maxj(F (x)j). (2)

The datasets used for the training of the models, and later for the generation
of adversarial images will be MNIST [11] and CIFAR-10 [9].

In Fig. 2 we show the architectures to learn the important characteristics of
each of the datasets for their subsequent classification. In all of the cases the
global architecture is the same: a set of 2D convolutional layers, followed by a
set of dense layers. At the last dense layer a softmax operation is performed in
order to interpret the outputs of the network as probabilities. The results for the
training process are shown in Table 1. Let us note that the two problems involve
different levels of complexity. The characteristics of MNIST dataset can be learnt
almost perfectly while CIFAR-10 displays a greater level of difficulty.

Database Val Acc

MNIST 0.992
CIFAR-10 0.762

Table 1: Validation accuracy for the two datasets with the networks of Fig. 2.
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InputLayer
input:

output:

(None, 28, 28, 1)

(None, 28, 28, 1)

Conv2D
input:

output:

(None, 28, 28, 1)

(None, 26, 26, 32)

Conv2D
input:

output:

(None, 26, 26, 32)

(None, 24, 24, 32)

MaxPooling2D
input:

output:

(None, 24, 24, 32)

(None, 8, 8, 32)

Conv2D
input:

output:

(None, 8, 8, 32)

(None, 6, 6, 16)

Flatten
input:

output:

(None, 6, 6, 16)

(None, 576)

Dense
input:

output:

(None, 576)

(None, 128)

Dense
input:

output:

(None, 128)

(None, 10)

InputLayer
input:
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(None, 32, 32, 3)

(None, 32, 32, 3)

Conv2D
input:

output:

(None, 32, 32, 3)

(None, 32, 32, 32)

Conv2D
input:

output:

(None, 32, 32, 32)

(None, 30, 30, 32)

MaxPooling2D
input:

output:

(None, 30, 30, 32)

(None, 10, 10, 32)

Conv2D
input:

output:

(None, 10, 10, 32)

(None, 10, 10, 64)

Conv2D
input:

output:

(None, 10, 10, 64)

(None, 8, 8, 64)

MaxPooling2D
input:

output:

(None, 8, 8, 64)

(None, 2, 2, 64)

Conv2D
input:

output:

(None, 2, 2, 64)

(None, 2, 2, 16)

Flatten
input:

output:

(None, 2, 2, 16)

(None, 64)

Dense
input:

output:

(None, 64)

(None, 1024)

Dense
input:

output:

(None, 1024)

(None, 10)

Fig. 2: Network architectures used for the MNIST dataset (left) and CIFAR-10
dataset (right). The indices represent the dimensions. For instance 32,32,2 means
a structure with a spatial dimension of 32x32 and 3 channels.

The adversarial examples are then generated using three different techniques:
DeepFool [15], FGSM [6] and CW2 (norm 2 Carlini-Wagner) [2]. Let us observe
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that we are working in the situation most favorable to the attacker, given that
it has perfect knowledge of the network and weights used, in other words they
all are white box attacks. Moreover, in all of the cases we analyze the attack
methods that generate by themselves the label of the adversarial example, instead
of having to use a label provided by some external source. In other words we are
using untargeted attacks.

Next, we briefly explain each one of the attack methods.

2.1 DeepFool Method

For an image x, whose correct classification is k0 we first evaluate

k∗ = arg mink 6=k0

Zk0
(x)− Zk(x)

‖∇x(Zk0(x)− Zk(x))‖2
(3)

In this way, we identify the target index that will require the minimal perturbation
to cross the decision boundary. Now the input image is modified according to
the following rule:

x→ x− (1 + η)r, (4)

where

r =
Zk0

(x)− Zk∗(x)

‖∇x(Zk0(x)− Zk∗(x))‖22
∇x(Zk0

(x)− Zk∗(x)), (5)

and η is some small number included to make more likely to go beyond the
decision boundary. If this is not achieved, eqs. 3 and 4 are applied iteratively
until the output class has changed.

This attack intends to achieve the perturbation that minimizes the l2− norm,
but generalizations to another norms are also possible (see [15]).

2.2 Fast Gradient Sign Method

As it was proposed in [6] each input image is modified according to the following
rule:

x→ x− ε sign (∇xJ(θ, {x})) (6)

Parameter ε can be tuned to have an acceptable success rate for the generation of
adversarial examples with a small perturbation. Let us observe that this method
affects all the pixels in the image with the same absolute value.

2.3 Carlini-Wagner Attack (l2− norm)

This attack uses an optimization approach. For a given image x with initial
classification k0, we search the image x′ that minimizes the following function

‖x′ − x‖22 + cL(x′) (7)

where the loss function L is defined by

L(x′) = max(max{Z(x′)i : i 6= k0} − Z(x′)k0
,−κ) (8)
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Parameter κ controls the confidence of the adversarial examples and parameter c
regulates the relative weight of the constraint on the norm. Larger values of c
will generate adversarial examples at a higher success rate but the size of the
perturbation will be larger.

2.4 Performance of the Attack Methods

The performance of the attack methods can be quantified by the success rate
Pgen, which is the fraction of times that they successfully converge on a desired
label and by the mean size of the adversarial perturbations, which can be defined
by ρadv or L2. Due to the fact that by reading other papers one or the other
parameter can be seen. In this work we present both.

ρadv =
1

Ntest

∑
x∈test

‖r(x)‖2
‖x‖2

, (9)

L2 =
1

Ntest

∑
x∈test

‖r(x)‖2, (10)

where x are the images in the test set and the vector r(x) represents the
perturbation generated for each image.

In the Attack results section of Table 2 we show Pgen and L2 for each dataset
and attack. Note that the Table 2 also shows the parameters used to perform
the attacks. These parameters were chosen in such a way that L2 is similar when
using different attacks over the same dataset.

Dataset Attack Attack params
Attack results Optimal detection results

ρadv L2 Pgen σconv σdense
ROC-AUC Pdet

set val set val

MNIST
DeepFool η = 0.01 0.18 1.52 0.99 0.60 1.00 1.00 1.00 0.99 0.99

FGSM ε = 0.062 0.19 1.65 0.08 1.00 3.00 0.80 0.86 0.73 0.80

CW2 cte = 0.011 0.18 1.47 0.73 1.00 1.80 0.99 0.99 0.98 0.98

CIFAR-10
DeepFool η = 0.45 0.01 0.26 0.99 0.06 0.02 0.93 0.94 0.89 0.89

FGSM ε = 0.005 0.01 0.26 0.39 0.14 0.14 0.62 0.63 0.59 0.59

CW2 cte = 0.0032 0.01 0.29 0.83 0.08 0.04 0.91 0.93 0.86 0.87

Table 2: Results obtained when performing attack and detection in the two
datasets. The parameters of the attacks were chosen in such a way that the size
of the adversarial perturbations are similar between attacks for the same dataset.

We can see that the three methods generate different results. DeepFool has
the highest probability of success when trying to generate an adversarial example,
so it could be considered the most successful method. In the other extreme FGSM
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has the lowest probability of success. This probability could be increased by
taking a larger value of parameter ε, but that would lead to a larger perturbation,
that can be detected by visual inspection.

Fot the MNIST dataset, the adversarial image of a FGSM attack can be easily
detected in the background of the image. The CW2 attack has an intermediate
behavior between DeepFool and FGSM. On the other hand, for the CIFAR10
dataset, the three adversarial images are indistinguishable from the natural one.

Natural
"5"

Adv DeepFool
"6"

Adv FGSM
"6"

Adv CW2 
"6"

Natural
"ship"

Adv DeepFool
"automobile"

Adv FGSM
"automobile"

Adv CW2 
"automobile"

Fig. 3: Sample of results from the MNIST dataset in the top row and the CIFAR-
10 in the bottom row. Left panel: natural images. Other panels, from left to right:
result of the attacks for DeepFool, FGSM and CW2.

3 Noise Based Detection Method

As mentioned before, the main goal of this work is to detect whether a given
image is natural or adversarial. In order to do this, stochastic neural activations
are added to the model, which means adding Gaussian perturbations of mean
zero and a variance to be determined, in the argument of the activation functions
of some set of neurons. In the deterministic case the activation of neuron i is
given by

Fi = g

∑
j

AijFj + bi

 (11)
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where g is the activation function, Fj is the output of neuron j, Aij is the
connection strength between neuron j and neuron i and bi is the bias. Note that
in the case of convolutional networks, neurons only see a local surrounding, so
matrix A would have non-zero values in local connections and zeros in the rest.

Our proposal is to replace Eq. 11 by

Fi = g

∑
j

AijFj + bi + ξi

 (12)

where ξi are independent Gaussian random variables with 0 mean and standard
deviation σi. If σi is not zero the output of the network will be stochastic. We
can present the same input several times obtaining different results. Suppose
we present a given input Nr times. Let us denote with fr the fraction of times
the prediction of the network is the same as in the deterministic network. Our
methods predicts that the input is an adversarial example if fr is lower than
some threshold value fT . Otherwise it will be considered as a natural example.
The quality for the prediction can be evaluated via the ROC-AUC, that gives the
fraction of true positives as a function of the false positives for different values
of the threshold. A value of ROC-AUC of 1 means that there is a threshold
value that discriminates perfectly between natural and adversarial examples. If
ROC-AUC is 0.5, the method gives a random answer.

The expected behavior of this detection method would be that when the
size of the perturbation approaches 0, the ROC-AUC should tend to 0.5, where
adversarial examples, by definition, fool the deterministic network. By contrast,
with very large perturbations, natural and adversarial images are so disturbed
that they become indistinguishable from each other and ROC-AUC is also 0.5.
In between, there may be some perturbation size with a ROC-AUC greater than
0.5 and in the best case close to 1.

This prescription defines in fact a family of detection methods, based on which
of the neurons have a stochastic activation. In this study, we have decided to place
this stochastic activation in the last convolutional layer and in the penultimate
dense layer. In this way we can analyze whether it is more effective to perturb
the network at the feature level or at the level where the final decision is taken.
A detailed analysis of which layers should be perturbed in order to optimize
detection performance will be done in a future work.

Note that for each dataset the architecture to be used and the position of the
stochastic activation has already been defined. Therefore, the only free parameters
are the variances of the added Gaussian perturbations, that we denote by σconv
and σdense. Fig. 4 shows the results for the three attacks and the two datasets. It
is important to mention that to obtain all the graphs in Figure 4 the datasets were
filtered so that the only images taken into account were the correctly classified
by the neural network and with successful adversarial examples generated

From Fig. 4 we can conclude that the optimal values of the variances of
the stochastic neurons depends on the problem. For CIFAR-10 the optimal
configuration is achieved for smaller values of σconv and σdense.
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(f) CIFAR-10 - CW2

Fig. 4: Values of ROC-AUC for the different datasets and attack methods as a
function of σconv and σdense. The optimal ROC-AUC value, i.e. the highest, is
shown with a white cross.

From these results we can choose the combination of variances σconv and σdense
that maximizes the ROC-AUC indicator. Then, using these optimal variances
values, the optimal threshold fT value is calculated. This is the value that
minimizes the sum of false positives and false negatives. Or what is equivalent, it
maximizes the probability of success in predicting the nature of an image (Pdet)
using this detection technique. Remember that the ROC-AUC and Pdet obtained
until now were determined in the process of setting fT , so in Table 2 these values
are shown as ROC-AUC set and Pdet set.

To validate the results, we use a new collection of natural and adversarial
images that were not used to set the optimal values of ROC-AUC and Pdet.
Using fT and the optimal values variances σconv and σdense already obtained, we
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calculate the validation values of ROC-AUC and Pdet over the new set of images.
These results are shown in the Table 2.

In order to emphasize the difference in behavior between the different cases
we show in Fig. 5 the distribution of values of fr for the different cases for the
optimal choice of σconv and σdense. Remember that the fT shown in each of the
histograms graphs was obtained with a certain group of images that is not shown.
Then, with another group of validation images, the fT value previously obtained
is put to the test. The histograms correspond to the validation images.

When performing the FGSM attack on the CIFAR-10 dataset, the lowest
values of ROC-AUC and Pdet were obtained. These values are congruent with
the histograms of the Figure 5d which are difficult to discriminate. In the rest
of the cases, there is an fT with convincing results that vary from 80 to 99% in
percentage of success in detecting the nature of the validation images.

In order to make a comparison with other papers, the results obtained from [5]
and [19] are presented in the Table 3. The generation of the adversarial examples
in this work was done with the smallest possible perturbations to keep the
adversarial examples as similar as possible to the natural examples. As a result,
in the Table 3 it can be seen that the magnitudes of the perturbations chosen
in this work are smaller than the rest. If we compare two detection methods for
a particular attack, it would be preferable if the size of the perturbations are
similar.

Data extracted from Dataset Attack L2 Pdet(val) ROC-AUC(val)

Noise Based Approach

MNIST
DeepFool 1.52 0.99 1.00

FGSM 1.65 0.80 0.86
CW2 1.47 0.98 0.99

CIFAR-10
DeepFool 0.26 0.89 0.94

FGSM 0.26 0.59 0.63
CW2 1.29 0.87 0.93

Feature squeezing [19]

MNIST
DeepFool - - -

FGSM 5.91 1.00 -
CW2 2.87 1.00 -

CIFAR-10
DeepFool 0.23 0.77 -

FGSM 0.86 0.20 -
CW2 0.29 1.00 -

From artifacts [5]

MNIST
DeepFool - - -

FGSM 6.22 - 0.91
CW2 4.71 - 0.98

CIFAR-10
DeepFool − - -

FGSM 2.74 - 0.72
CW2 2.70 - 0.92

Table 3: Comparison of results between this paper, [5] and [19]
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(b) CIFAR-10 - DeepFool
σconv = 0.06 ;σdense = 0.02
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(c) MNIST - FGSM
σconv = 1.00 ;σdense = 3.00
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(d) CIFAR-10 - FGSM
σconv = 0.14 ;σdense = 0.14
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(e) MNIST - CW2
σconv = 1.00 ;σdense = 1.80
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(f) CIFAR-10 - CW2
σconv = 0.08 ;σdense = 0.04

Fig. 5: Fraction of images that have a given value of fr. Violet: natural images.
Yellow: adversarial images. Remember that the histograms used for setting the
value of fT are not shown. Instead, the histograms that are shown are used to
validate fT .

4 Conclusion

We introduced here a new method for detecting adversarial examples. It is based
on DNN’s where some neurons can incorporate stochastic activation functions.
We analyzed three different attack methods (DeepFool, FGSM and CW2) applied
to two datasets (MNIST and CIFAR-10). We analyzed two possibilities for the
location of the stochastic activation: the last convolutional layer and the penulti-
mate dense layer. We found that depending on the characteristics of the problem,
the optimal values of the variances of the stochastic variables are different. A more
detailed optimization of the parameters of the stochastic activations (location
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in the model, probability distribution, etc.) could be performed. This would not
only improve detection performance, but would also give us an insight to develop
better detections methods.

As it is suggested in [1] detection methods should be tested for several
datasets and attack methods. Several defenses that are useful against attacks
such as FGSM or JSMA [16] fail againts stronger attacks such as DeepFool or
CW. Here we show a method that, in contrast, works best for these stronger
attacks and could be used as part of a scheme where several methods are applied
simultaneously in order to estimate if a given input is adversarial or not.
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